
© 2023, Universidad Politécnica Salesiana, Ecuador
ISSN impreso: 1390-6291; ISSN electrónico: 1390-8618
288 Amine Sabek y Jakub Horák
bido a que la continuidad de una empresa está
interconectada con la estabilidad general de la
economía del Estado. Predecir con precisión las
dicultades nancieras de una empresa facilita el
mantenimiento de la prosperidad, minimiza las
pérdidas, aumenta las tasas de inversión, preserva
las oportunidades de empleo, evita los despidos
y mantiene un entorno mutuamente benecioso
para todas las partes involucradas.
Apoyos y soporte financiero
de la investigación
Esta investigación fue nanciada por el Insti-
tuto de Tecnología y Negocios en České Budějo-
vice, el proyecto: IVSUZO2301 - El impacto de la
economía circular en los precios de las acciones de
las empresas que cotizan en la bolsa de valores.
Referencias bibliográficas
Asante-Okyere, S., Shen, C., Ziggah, Y. Y., Rulegeya,
M. M. y Zhu, X. (2018). Investigating the
predictive performance of Gaussian process
regression in evaluating reservoir porosity
and permeability. Energies, 11.
https://doi.org/10.3390/en11123261
Bonello, J., Brédart, X. y Vella, V. (2018). Machine lear-
ning models for predicting financial distress.
Journal of Research in Economics, 2, 174-185.
https://doi.org/10.24954/JORE.2018.22
Chen, S. y Shen, Z. D. (2020). Financial distress pre-
diction using hybrid machine learning techni-
ques. Asian Journal of Economics, Business and
Accounting, 16, 1-12.
https://bit.ly/4iTnlPn
Chen, S. D. y Jhuang, S. (2018). Financial distress pre-
diction using data mining techniques. ICIC
Express Letters, Part B: Applications, 9(2), 131-
136. https://bit.ly/3qH5eHc
Chen, W.-S. y Du, Y.-K. (2009). Using neural networks
and data mining techniques for the financial
distress prediction model. Expert Systems with
Applications, 36(2), 4075-4086.
https://doi.org/10.1016/j.eswa.2008.03.020
Costa, M., Lisboa, I. y Gameiro, A. (2022). Is the finan-
cial report quality important in the default
prediction? SME Portuguese Construction
Sector Evidence. Risks, 10(5).
https://doi.org/10.3390/risks10050098
Ferkousl, K., Chellalil, F., Kouzoul, A. y Bekkar, B.
(2021). Wavelet-Gaussian process regression
model for forecasting daily solar radiation in
the Saharan climate. Clean Energy, 5(2), 316-
328. https://doi.org/10.1093/ce/zkab012
Gavurova, B., Belas, J., Bilan, Y. y Horak, J. (2020). Study
of legislative and administrative obstacles
to SMEs business in the Czech Republic and
Slovakia. Oeconomia Copernicana, 11(4), 689-
719. https://doi.org/10.24136/OC.2020.028
Gregova, E., Valaskova, K., Adamko, P., Tumpach, M.
y Jaros, J. (2020). Predicting financial distress
of slovak enterprises: comparison of selected
traditional and learning algorithms methods.
Sustainability, 12(10).
https://doi.org/10.3390/su12103954
Hamoudi, Y., Amimeur, H., Aouzellag, D., Abdolraso,
M. G. M. y Ustun, T. S. (2023). Hyperparameter
bayesian optimization of Gaussian process
regression applied in speed-sensorless pre-
dictive torque control of an autonomous wind
energy conversion system. Energies, 16(12).
https://doi.org/10.3390/en16124738
Hantono, H. (2019). Predicting financial distress using
Altman score, Grover score, Springate score,
Zmijewski score (case study on consumer goods
company). Accountability, 8(1), 1-16.
https://doi.org/10.32400/ja.23354.8.1.2019.1-16
Herfurth, H. (2020). Gaussian process regression in
computational finance. Project Report, Uppsala
University, 1-29. https://bit.ly/3KGoUSk
Horak, J., Vrbka, J. y Suler, P. (2020). Support vector
machine methods and artificial neural networ-
ks used for the development of bankruptcy
prediction models and their comparison.
Journal of Risk and Financial Management, 13(3).
https://doi.org/10.3390/jrfm13030060
Jan, C. l. (2021). Financial information asymmetry:
using deep learning algorithms to predict
financial distress. Symmetry, 13(3).
https://doi.org/10.3390/sym13030443
Jeong, J. y Kim, C. (2022). Comparison of machine
learning approaches for medium-to-long-term
financial distress predictions in the construc
-
tion industry. Buildings, 12(10).
https://doi.org/10.3390/buildings12101759
Kliestik, T., Vrbka, J. y Rowland, Z. (2018). Bankruptcy
prediction in Visegrad group countries using
multiple discriminant analysis. Equilibrium-
Quarterly Journal of Economics and Economic
Policy, 13(3), 569-593.
https://doi.org/10.24136/eq.2018.028
Krulicky, T. y Horak, J. (2021). Business performan-
ce and financial health assessment through
Artificial Intelligence. Ekonomicko - manažerské
spektrum, 15(2), 38-51.