Factores que influyen en la adopción del análisis de Big Datapor los auditores: un estudio mixto

Contenido principal del artículo

Moath Abdelkarim Abu Al Rob
Mohd Nazli Mohd Nor
Zalailah Salleh
Alia Majed Khalaf

Resumen

El objetivo de este estudio es analizar: ¿En qué medida la percepción de facilidad de uso (PEOU) y la percepción de utilidad (PU) explicanlas intenciones conductuales (BI) de los auditores para adoptar el análisis de grandes datos (BDA) en firmas de auditoría en Palestina?. Se utilizó unenfoque mixto, combinando datos cuantitativos de una encuesta censal a 94 auditores de las cuatro grandes firmas en Palestina (tasa de respuesta del86 %) con datos cualitativos de entrevistas semiestructuradas a nueve auditores en niveles gerenciales o superiores. Esta integración metodológicafortaleció la validez y confiabilidad de los resultados. Los hallazgos mostraron que la PU influye significativamente en las intenciones de adopciónde BDA, mientras que la PEOU tiene un impacto menor pero relevante. El estudio confirmó la aplicabilidad del Modelo de Aceptación Tecnológica(TAM) en la profesión de auditoría y aborda la brecha de investigación sobre la adopción de BDA en economías en desarrollo. Los hallazgos destacanque la percepción de utilidad es el principal impulsor y sugieren que mejorar la facilidad de uso podría aumentar aún más la adopción. Las implicacionesprácticas incluyen capacitación para las firmas de auditoría, políticas de apoyo por parte de los reguladores y soluciones de BDA accesibles yfáciles de usar para los proveedores de tecnología. Al ofrecer insights adaptados a entornos con recursos limitados, este estudio orienta la adopciónde BDA en auditoría, beneficiando tanto a la academia como a la industria.

Detalles del artículo

Sección
Artículos destinados al monográfico

Referencias

Ab Hamid, M. R., Sami, W. y Sidek, M. M. (2017, September). Discriminant validity assessment: Use of Fornell & Larcker criterion versus HTMT criterion. Journal of Physics: Conference Series, 890(1), 012163). IOP Publishing. https://doi.org/10.1088/1742-6596/890/1/012163

Abu Al Rob, M., Mohd Nor, M. N. y Salleh, Z. (2024). The influence of big data analytics adoption on auditors' professional skepticism in risk assessment: An empirical study using the technology acceptance model. Journal of Logistics, Informatics and Service Science, 11(11), 158-177. https://doi.org/10.33168/JLISS.2024.1110

Abu Al Rob, M., Mohd Nor, M. N. y Salleh, Z. (2024). The role of training in Big Data Analytics adoption: an empirical study of auditors using the technology acceptance model. Electronic Journal of Business Research Methods, 22(2), 30-45. https://doi.org/10.34190/ejbrm.22.2.3752

Adrianto, Z. (2018). Auditing in the era of big data: a literature review. Jurnal Akuntansi dan Keuangan, 17(1), 1-6.‏

Al Amin, M., Nowsin, N., Hossain, I. y Bala, T. (2020). Impact of social media on consumer buying behaviour through online value proposition: A study on e-commerce business in Bangladesh. Academy of Strategic Management Journal, 19(5), 1-18. bit.ly/3EycBHG

Alyoussef, I. Y. y Al-Rahmi, W. M. (2022). Big data analytics adoption via lenses of Technology Acceptance Model: empirical study of higher education. Entrepreneurship and Sustainability Issues, 9(3), 399.‏ ‏ https://doi.org/10.9770/jesi.2022.9.3(24)

Ajibade, P. (2018). Technology acceptance model limitations and criticisms: Exploring the practical applications and use in technology-related studies, mixed-method, and qualitative researches. Library Philosophy and Practice, 9.‏

Braun, V. y Clarke, V. (2006). Using thematic analysis in psychology. Qualitative research in psychology, 3(2), 77- 1001. https://doi.org/10.1191/1478088706qp063oa

Brock, V. y Khan, H. U. (2017). Big data analytics: does organizational factor matters impact technology acceptance? Journal of Big Data, 4(1), 1-28. https://doi.org/10.1186/s40537-017-0081-8

Bumblauskas, D., Nold, H., Bumblauskas, P. e Igou, A. (2017). Big data analytics: transforming data to action. Business Process Management Journal, 23(3), 703-720. https://doi.org/10.1108/BPMJ-03-2016-0056

Cabrera-Sánchez, J. P. y Villarejo-Ramos, A. F. (2020). Factors affecting the adoption of big data analytics in companies. Revista de Administração de Empresas, 59, 415-429.‏ https://doi.org/10.1590/S0034-759020190607.

Chopdar, P. K., Korfiatis, N., Sivakumar, V. J. y Lytras, M. D. (2018). Mobile shopping apps adoption and perceived risks: A cross-country perspective utilizing the Unified Theory of Acceptance and Use of Technology. Computers in Human Behavior, 86, 109-128. https://doi.org/10.1016/j.chb.2018.04.017.

Creswell, J. W. (2009). Research design: Qualitative, quantitative, and mixed methods approaches (3rd ed.). SAGE Publications.

Dagilienė, L. y Klovienė, L. (2019). Motivation to use big data and big data analytics in external auditing. Managerial Auditing Journal. https://doi.org/10.1108/MAJ-01-2018-1773

Davis, F. D., Bagozzi, R. P. y Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management science, 35(8), 982-1003.‏ https://doi.org/10.1287/mnsc.35.8.982

Davis, F. D. y Venkatesh, V. (1996). A critical assessment of potential measurement biases in the technology acceptance model: three experiments. International Journal of Human-Computer Studies, 45(1), 19-45. https://doi.org/10.1006/ijhc.1996.0040

Demoulin, N. T. y Coussement, K. (2020). Acceptance of text-mining systems: The signaling role of information quality. Information & Management, 57(1), 103120.‏ https://doi.org/10.1016/j.im.2018.10.006

DiCicco‐Bloom, B. y Crabtree, B. F. (2006). The qualitative research interview. Medical education, 40(4), 314-321. https://doi.org/10.1111/j.1365-2929.2006.02418.x

Diop, E. B., Zhao, S. y Duy, T. V. (2019). An extension of the technology acceptance model for understanding travelers’ adoption of variable message signs. PLoS one, 14(4), e0216007. https://doi.org/10.1371/journal.pone.0216007.

Eilifsen, A., Kinserdal, F., Messier, W. F. y McKee, T. E. (2020). An exploratory study into the use of audit data analytics on audit engagements. Accounting Horizons, 34(4), 75-103. https://doi.org/10.2308/HORIZONS-19-121.‏

Fornell, C. y Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104

Gangwar, H. (2020). Big Data Analytics usage and business performance: integrating the Technology Acceptance Model (TAM) and Task Technology Fit (TTF) Model. Electronic Journal of Information Systems Evaluation, 23(1), 45-64.‏ https://doi.org/10.34190/EJISE.20.23.1.004

Glasofer, A. y Townsend, A. B. (2020). Determining the level of evidence: Nonexperimental research designs. Nursing 2020 Critical Care, 15(1), 24-27.‏ https://doi.org/10.1097/01.NURSE.0000731852.39123.e1

Grimaldo, J. R. y Uy, C. (2020). Factors affecting recruitment officers' intention to use online tools. Review of Integrative Business and Economics Research, 9, 194-208. https://bit.ly/4hUCQql

Hair, J. F., Risher, J. J., Sarstedt, M. y Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European business review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203

Henseler, J., Ringle, C. M. y Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. En New challenges to international marketing (Vol. 20, pp. 277-319). Emerald Group Publishing Limited. https://doi.org/10.1108/S1474-7979(2009)0000020014

Hossain, S. A., Bao, Y., Hasan, N. y Islam, M. F. (2020). Perception and prediction of intention to use online banking systems: An empirical study using extended TAM. International Journal of Research in Business and Social Science (2147-4478), 9(1), 112-126. https://doi.org/10.20525/ijrbs.v9i1.591

İdil, K. A. Y. A. y Akbulut, D. H. (2018). Big data analytics in financial reporting and accounting. Press Academia Procedia, 7(1), 256-259.‏ https://doi.org/10.17261/Pressacademia.2018.892

Khaldi, K. (2017). Quantitative, qualitative or mixed research: Which research paradigm to use? Journal of Educational and Social Research, 7(2), 15-30. https://doi:10.5901/jesr.2017.v7n2p15

Levy, P. S. y Lemeshow, S. (2013). Sampling of populations: Methods and applications (4th ed.). John Wiley & Sons.

Li, H. L. y Lai, M. M. (2011). Demographic differences and internet banking acceptance. MIS REVIEW: An International Journal, 16(2), 55-92.‏ https://doi.org/10.6131/MISR.201103_16(2).0003

Mei, Y. C. y Aun, N. B. (2019). Factors influencing consumers' perceived usefulness of M-Wallet in Klang valley, Malaysia. Review of Integrative Business and Economics Research, 8, 1-23.‏ https://bit.ly/4hLAhY1

Müller, S. D. y Jensen, P. (2017). Big data in the Danish industry: application and value creation. Business Process Management Journal.‏ https://doi.org/10.1108/BPMJ-01-2016-0017

No, W. G., Lee, K., Huang, F. y Li, Q. (2019). Multidimensional audit data selection (MADS): A framework for using data analytics in the audit data selection process. Accounting Horizons, 33(3), 127-140.‏ https://doi.org/10.2308/acch-52453

Ofori, D. y Appiah-Nimo, C. (2019). Determinants of online shopping among tertiary students in Ghana: An extended technology acceptance model. Cogent Business & Management, 6(1), 1644715.‏ https://doi.org/10.1080/23311975.2019.1644715

Olufemi, J. (2018). Considerations for the adoption of Cloud-based Big Data Analytics in SMALL BUSINESS ENTERPRISES. Electronic Journal of Information Systems Evaluation, 21(2), 63-79. https://bit.ly/4hP5NDW

Shahbaz, M., Gao, C., Zhai, L., Shahzad, F. y Hu, Y. (2019). Investigating the adoption of big data analytics in healthcare: the moderating role of resistance to change. Journal of Big Data, 6(1), 1-20.‏ https://doi.org/10.1186/2047-2501-2-3.

Tarabasz, A. y Poddar, G. (2019). Factors influencing adoption of wearable devices in Dubai. Journal of Economics and Management, 36(2), 123-143.‏ https://bit.ly/4jKMa1w

Verma, S., Bhattacharyya, S. S. y Kumar, S. (2018). An extension of the technology acceptance model in the big data analytics system implementation environment. Information Processing & Management, 54(5), 791-806.‏ https://doi.org/10.1016/j.ipm.2018.01.004