Gaussian Process Regression´s Hyperparameters Optimization to Predict Financial Distress
Main Article Content
Abstract
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authorship: The list of authors signing must include only those people who have contributed intellectually to the development of the work. Collaboration in the collection of data is not, by itself, a sufficient criterion of authorship. "Retos" declines any responsibility for possible conflicts arising from the authorship of the works that are published.
Copyright: The Salesian Polytechnic University preserves the copyrights of the published articles, and favors and allows their reuse under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Ecuador license. They may be copied, used, disseminated, transmitted and publicly displayed, provided that: i) the authorship and the original source of their publication (journal, editorial and work URL) are cited; (Ii) are not used for commercial purposes; Iii) mention the existence and specifications of this license.
References
Asante-Okyere, S., Shen, C., Ziggah, Y. Y., Rulegeya, M. M. y Zhu, X. 2018. Investigating the predictive performance of Gaussian process regression in evaluating reservoir porosity and permeability. Energies, 11.
https://doi.org/10.3390/en11123261
Bonello, J., Brédart, X. y Vella, V. 2018. Machine learning models for predicting financial distress. Journal of Research in Economics, 2, 174-185. https://doi.org/10.24954/JORE.2018.22
Chen, S. y Shen, Z. D. 2020. Financial distress prediction using hybrid machine learning techniques. Asian Journal of Economics, Business and Accounting, 16, 1-12. https://doi.org/10.9734/ajeba/2020/v16i230231
Chen, S. D. y Jhuang, S. 2018. Financial distress prediction using data mining techniques. ICIC Express Letters, Part B: Applications, 9(2), 131-136. https://bit.ly/3qH5eHc
Chen, W.-S. y Du, Y.-K. 2009. Using neural networks and data mining techniques for the financial distress prediction model. Expert Systems with Applications, 36(2), 4075-4086.
https://doi.org/10.1016/j.eswa.2008.03.020
Costa, M., Lisboa, I. y Gameiro, A. 2022. Is the financial report quality important in the default prediction? SME Portuguese Construction Sector Evidence. Risks, 10(5).
https://doi.org/10.3390/risks10050098
Ferkousl, K., Chellalil, F., Kouzoul, A. y Bekkar, B. 2021. Wavelet-Gaussian process regression model for forecasting daily solar radiation in the Saharan climate. Clean Energy, 5(2), 316-328. https://doi.org/10.1093/ce/zkab012
Gavurova, B., Belas, J., Bilan, Y. y Horak, J. 2020. Study of legislative and administrative obstacles to SMEs business in the Czech Republic and Slovakia. Oeconomia Copernicana, 11(4), 689-719. https://doi.org/10.24136/OC.2020.028
Gregova, E., Valaskova, K., Adamko, P., Tumpach, M. y Jaros, J. 2020. Predicting financial distress of slovak enterprises: comparison of selected traditional and learning algorithms methods. Sustainability, 12(10).
https://doi.org/10.3390/su12103954
Hamoudi, Y., Amimeur, H., Aouzellag, D., Abdolraso, M. G. M. y Ustun, T. S. 2023. Hyperparameter bayesian optimization of Gaussian process regression applied in speed-sensorless predictive torque control of an autonomous wind energy conversion system. Energies, 16(12). https://doi.org/10.3390/en16124738
Hantono, H. (2019). Predicting financial distress using Altman score, Grover score, Springate score, Zmijewski score (case study on consumer goods company). Accountability, 8(1), 1-16.
https://doi.org/10.32400/ja.23354.8.1.2019.1-16
Herfurth, H. 2020. Gaussian process regression in computational finance. Project Report, Uppsala University, 1-29. https://bit.ly/3KGoUSk
Horak, J., Vrbka, J. y Suler, P. 2020. Support vector machine methods and artificial neural networks used for the development of bankruptcy prediction models and their comparison. Journal of Risk and Financial Management, 13(3). https://doi.org/10.3390/jrfm13030060
Jan, C. l. 2021. Financial information asymmetry: using deep learning algorithms to predict financial distress. Symmetry, 13(3). https://doi.org/10.3390/sym13030443
Jeong, J. y Kim, C. 2022. Comparison of machine learning approaches for medium-to-long-term financial distress predictions in the construction industry. Buildings, 12(10). https://doi.org/10.3390/buildings12101759
Kliestik, T., Vrbka, J. y Rowland, Z. 2018. Bankruptcy prediction in Visegrad group countries using multiple discriminant analysis. Equilibrium-Quarterly Journal of Economics and Economic Policy, 13(3), 569-593.
https://doi.org/10.24136/eq.2018.028
Krulicky, T. y Horak, J. 2021. Business performance and financial health assessment through Artificial Intelligence. Ekonomicko - manažerské spektrum, 15(2), 38-51.
Liew, K. F., Lam, W. S. y Lam, W. H. 2023. Financial distress analysis of technology companies using grover model. Computer Sciences & Mathematics Forum, 7(1).
https://doi.org/10.3390/IOCMA2023-14405
Liu, Y., Chen, K., Kumar, A. y Patnaik, P. 2023. Principles of machine learning and its application to thermal barrier coatings. Coatings, 13(7). https://doi.org/10.3390/coatings13071140
Paule-Vianez, J. 2019. Bayesian networks to predict financial distress in spanish banking. Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA, 20, 131-152. https://doi.org/10.24309/recta.2019.20.2.02
Qu, Y., Quan, P., Lei, M. y Shi, Y. 2019. Review of bankruptcy prediction using machine learning and deep learning techniques. Procedia Computer Science, 162, 895-899.
https://doi.org/10.1016/j.procs.2019.12.065
Rahman, M., Sa, C. L. y Masud. M. A. K. 2021. Predicting firms’ financial distress: an empirical analysis using the F-Score Model. Journal of Risk and Management, 14(5).
https://doi.org/10.3390/jrfm14050199
Shi, Y. y Li, X. 2019. An overview of bankruptcy prediction models for corporate firms: A systematic literature review. Intangible Capital Journal, 15(2), 1866-1875. https://doi.org/10.3926/ic.1354
Taki, M., Rohani, A., Soheili-Fard, F. y Abdeshahi, A. 2018. Assessment of energy consumption and modeling of output energy for wheat production by neural network (MLP and RBF) and Gaussian process regression (GPR) models. Journal of Cleaner Production, 172, 3028-3041. https://doi.org/10.1016/j.jclepro.2017.11.107
Vochozka, M., Vrbka, J. y Suler, P. 2020. Bankruptcy or success? The effective prediction of a company’s financial development using LSTM. Sustainability, 12(18).
https://doi.org/10.3390/su12187529
Wang, S., Gong, J., Gao, H., Liu, W. y Feng, Z. 2023. Gaussian process regression and cooperation search algorithm for forecasting nonstationary runoff time series. Water, 15(11). https://doi.org/10.3390/w15112111
Yang, Z., Li, X., Yao, X., Sun, J. y Shan, T. 2023. Gaussian Process Gaussian Mixture PHD filter for 3D multiple extended target Tracking. Remote Sensing, 15(13).
https://doi.org/10.3390/rs15133224
Zhou, T., Song, Z. y Sundmacher, K. 2019. Big data creates new opportunities for materials research: a review on methods and applications of machine learning for materials design. Engineering, 5, 1017-1026.
https://doi.org/10.1016/j.eng.2019.02.011